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Abstract—As one of the most important deep learning models,
convolutional neural networks (CNNs) have achieved great suc-
cesses in a number of applications such as image classification,
speech recognition and nature language understanding. Training
CNNs on large data sets is computationally expensive, leading to
a flurry of research and development of open-source parallel
implementations on GPUs. However, few studies have been
performed to evaluate the performance characteristics of those
implementations. In this paper, we conduct a comprehensive com-
parison of these implementations over a wide range of parameter
configurations, investigate potential performance bottlenecks and
point out a number of opportunities for further optimization.

Index Terms—Convolutional neural network, deep learning,
GPU, performance evaluation, parallel computing.

I. INTRODUCTION

Convolutional neural networks (CNNs) are important
deep learning models that have achieved great successes
in large scale image classifications [2], [9], [22], speech
recognitions[3], [4] and nature language understanding [5],
[6], [7]. This can be attributed to the advanced architecture of
CNNs (such as AlexNet, VGGNet, GoogleNet and OverFeat)
[2], [12], [15], [22], large labeled training samples [16] and
powerful computing devices such as GPUs.

The training cost of CNNs is very high for two reasons.
First, CNNs are getting more complicated due to increased
depth and parameters. For example, AlexNet, the winner of
ILSVRC-2012, has 8 layers (5 convolutional layers and 3
fully-connected layers) and more than 60 million parameters.
VGGNet has 19 layers (16 convolutional layers and 3 fully-
connected layers) and over 144 million parameters. Another
recent model, GoogLeNet, is comprised of 22 layers with
about 6.8 million parameters [15]. Training these large-scale
CNNs requires thousands of iterations of forward and back-
ward propagations, and therefore is much time-consuming.

Second, the training samples are getting much larger. One of
the early CNNs, LeNet-5, was trained to recognize handwritten
digits on MNIST data set, which only contains 60,000 images
in the training set and 10,000 images in the testing set [8].
CIFAR-10 [11] dataset consists of 60,000 32×32 color images,
including 50,000 training images and 10,000 testing images.
In contrast, a larger dataset called ImageNet was provided in
2009, including more than 1.2 million high-resolution images.

Driven by industry groups like Google, YouTube, Twitter and
FaceBook, CNNs require to be trained on some very large
datasets (e.g., text, audio and video). Again, training on those
large-scale datasets requires significant runtime, and several
weeks or months is not uncommon.

To address this challenge, using GPUs to accelerate the
training process of CNNs is popular. During CNN training,
the computation is inherently parallel and involves a massive
amount of floating-point operations, e.g., matrix and vector
operations. This computing pattern is well suitable for GPU
computing model. Many of emerging deep learning frame-
works are highly optimized on GPUs with the CUDA program-
ming interface, including cuda-convnet [2], cuda-convnet2
[18], Theano [19], Torch [20], Decaf [21] and Caffe [23].
Most of these frameworks are open source and support one
or multiple GPUs. Moreover, some GPU-optimized libraries
are explored to accelerate CNNs, such as cuDNN [24] and
fbfft [25].

However, few studies have been performed to enable a
comprehensive evaluation on the performance characteristics
of those implementations over a wide range of configurations.
As our experiments and evaluations will show, each implemen-
tation has pros and cons, and there is no single implementation
that performs well in all scenarios. The best performance is
heavily dependent on different configurations.

The goal of this work is to assist practitioners identifying the
implementations that best serve their CNN computation needs
in different scenarios, and provide insights and suggestions
to practitioners and pinpoint aspects for researchers who are
interested in convolution optimization on GPUs. In this paper,
we conduct a head-to-head comparison of their runtime to as-
sist identifying the fastest implementation for a wide range of
scenarios. Furthermore, we also examine their memory usage
and shape limitation during GPU kernel execution. In addi-
tion, developing optimization schemes and implementations
requires an understanding of how efficiently the computing
power of GPUs has been exploited and where the potential
performance bottlenecks of those implementations are. We
thus conduct a performance profiling to study the intrinsic
characteristics of those implementations on GPU over different
typical configurations.
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Fig. 1: A simple CNN architecture (LeNet-5).

The rest of this paper is organized as follows. In Section
2, we present an overview of the architecture of CNNs and
three convolution strategies. In Section 3, we describe the
experimental environment and evaluation methodology. In
Section 4, we identify hotspot layers in CNNs and compare
different implementations in the running time over a wide
range of configurations. In Section 5, we analyze hotspot
functions in the hotspot layers and evaluate the performance of
each implementation on GPU. Finally, we conclude this paper
in Section 6.

II. BACKGROUND

Understanding the architecture of CNNs better is key to
evaluation and optimization of the convolution implementa-
tions. In this section, we present an overview of the architec-
ture of CNNs and discuss different convolution strategies that
are adopted by typical CNN implementations.

A. Convolutional Neural Networks

The training process of CNNs is a typical feed-forward
neural network, which applies BP algorithm to adjust learnable
kernels so as to minimize the cost function. Convolutional
neural network automatically provides some degree of shift
and distortion invariance by three key ideas: local receptive
field, shared weight, and pooling [26].

Convolutional layer is the central part in CNNs. In convo-
lutional layer, each neuron of the same feature map applies
the same weights over input data at all possible positions to
extract the corresponding features. The convolved results are
organized into a set of two dimensional feature maps. All
of neurons in a feature map share the same weights, which
are called shared weights. Each neuron of the current layer
is connected to a local region of the previous layer. This
connectivity with a local region is called a local receptive filed
[26]. Pooling layers are optionally used after convolutional
layers, and it aims to reduce the spatial size of feature map
and to control the over-fitting problem to some extent.

We take Lenet-5 as a typical example to illustrate the
architecture of CNNs. As shown in Figure 1, Lenet-5 is
stacked by convolutional layer, pooling layer and two fully
connected layers. The input image is first fed to input layer,
and then is passed through a stack of convolutional and pooling
layers. Repeat convolutions with the methods of local receptive

field, shared weight and pooling, until the last convolutional
layer holds a set of relatively high-level features. Finally, those
high-level features are mapped to a probability vector over ten
different classes in last two fully-connected layers.

B. Convolution Strategies

Recently, many deep learning frameworks and libraries have
been developed to implement CNN on GPUs, e.g., cuda-
convnet [2], cuda-convnet2 [18], Theano [19], Torch [20],
Decaf [21], Overfeat [22], Caffe [23], cuDNN [24] and fbfft
[25]. Since convolutional layers is the central part of CNNs,
researchers devote most efforts into design and optimization of
convolutional layers. In order to implement CNN, researchers
have explored different kind of convolution strategies. How-
ever, mainstream CNN implementations follow three convolu-
tion strategies: direct convolution, unrolling-based convolution
[32], [24], and FFT(Fast Fourier Transformation)-based con-
volution. These strategies are depicted as follows.

Direct Convolution. This is the traditional way to compute
convolution. During direct convolution, a small window slides
within an input feature map and a dot production between
the filter bank and local patch of the input feature map is
computed. The result of dot production is then passed into a
non-linear activation function, e.g., Sigmoid and Tanh. Out-
come results from this activation function are organized into
a new feature map as output. Repeating the above process for
each filter bank, we can get a set of two-dimensional feature
maps as the output of the convolutional layer. Presentative
implementations of direct convolution include cuda-convnet2
[18], and Theano-legacy [31].

Unrolling Based Convolution. Unrolling-based convolu-
tion is a very efficient method on GPUs according to [32]
[24]. The key idea behind unrolling convolution is to reshape
the input and the filter bank to double large matrices. The
local regions of input image are unrolled into columns and
the filter banks are unrolled into rows using im2col. The
final convolution can be converted into a clean and efficient
matrix-matrix production by using highly-optimized libraries
such as cuBLAS on GPUs [32]. Finally, the results should be
remapped back to the proper dimension using col2im. Many
new frameworks and libraries are developed based on this
strategy, such as Caffe [23], Torch-cunn [20], Theano-CorrMM
[19], and cuDNN [24].

FFT Based Convolution. This strategy is based on the
convolution theorem that a discrete convolution in the spatial
domain can be converted into the product of the Fourier
domain. The performance of FFT-based convolution can be
significantly improved thanks to its lower computation com-
plexity. In general, FFT-based convolution can be implemented
by three main steps. First, inputs and filter banks are trans-
formed from the spatial domain to the Fourier domain with
Fast Fourier Transformation (FFT). Second, those transformed
matrices are multiplied in the Fourier domain. Finally, the
product results are inversed from the Fourier domain to the
spatial domain. This strategy is followed by fbfft [25], and
Theano-fft [19].
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III. EXPERIMENTAL METHODOLOGY

A. Experimental Environment

We evaluate CNN implementations on a CPU-GPU hybrid
system. Ubuntu 14.04.1 is installed on a machine with Intel
Xeon E5-2620 2.10 GHz 24 processor, 64GB main memory
and 1TB hard disk. A single K40c GPU card is used in our
experiments. We use openCV 2.4.8 and CUDA Toolkit 7.5.

The K40c GPU card has an excellent computing power
due to its many-core architecture, large device memory, high
memory bandwidth and floating point throughput. The K40c
card consists of 15 Streaming Multiprocessors (SM), each SM
with 192 processing units (a.k.a., CUDA cores). Each CUDA
core can perform 2 floating-point operations per clock rate, and
work at a maximum core clock rate of 745 MHz. Therefore,
all the 2880 (15 × 192) CUDA cores provide a peak single-
precision floating point performance of 4.29 TFLOPS.

Each SM has 256KB register files and 48KB on-chip
memory. The card is also equipped with 12GB device memory
and has 288 GB/s peak memory bandwidth. More details about
CUDA and GPU can refer to [1].

B. Evaluation Methodology

We select Caffe [23], Torch-cunn [20], Theano-CorrMM
[19], Theano-fft [19], cuDNN [24], cuda-convnet2 [18], and
fbfft [25] as representative implementations in our evaluation.
It should be noticed that we evaluate cuDNN-v3 in Caffe, fbfft
in Torch and cuda-convnet2 with a Torch wrapper provided by
convnet-benchmarks [28]. Our evaluation methodology can be
categorized into two groups: high-level workload profiling and
detailed performance profiling.

For high-level workload profiling, we analyze the workload
from two aspects.

• We conduct a hotspot layer analysis for those CNN
implementations by profiling four typical CNN models
(i.e., ImageNet, GoogleNet, VGG, and Overfeat).

• For hotspot layers, we conduct a head-to-head perfor-
mance comparison in forms of speed across those seven
implementations, with varying batch sizes, input sizes,
filter numbers, kernel sizes and strides, and analyze
strengths and weaknesses for those implementations in
shape limitations.

For detailed performance profiling, we conduct four sets of
experiments as follows. The goal is to explore the reasons be-
hind performance differences between those implementations.

• For aforementioned hotspot layers, we identify top ker-
nels that dominate the total runtime.

• We compare peak GPU memory usage for those imple-
mentations over a wide range of configurations.

• With the nvprof tool [14] provided by NVIDIA, we profile
and analyze those top kernels in five important metrics
and two events.

• We evaluate the overheads of data transfers between CPU
and GPU over five typical configurations.

AlexNet

OverFeat

VGG

GoogleNet

0.0 0.2 0.4 0.6 0.8 1.0
Percentage

 Conv Layer  Relu Layer  Pool Layer  FC Layer  Concat Layer

Fig. 2: Runtime breakdown of typical real-life CNN models:
GooleNet, VGG, OverFeat and AlexNet.

IV. HIGH-LEVEL WORKLOAD PROFILING

In this section, we make a high-level workload profiling.
First, we break down four popular CNN models to investi-
gate where hotspot layers are during their training iterations.
Second, we compare the hotspot layers of those CNN imple-
mentations in terms of runtime over a large parameter space.

A. Hotspot Layer Analysis

The hotspot layer analysis can help understanding the flow
of CNN applications and identify hotspot layers that dominate
the total runtime in CNN models. We break down four popular
real-life CNN models, i.e., AlexNet, GoogleNet, OverFeat and
VGG, to collect the runtime of each layer and identify the
hotspot layers for each model. The runtime we collected is
the average runtime of each layer for 10 training iterations.
Each training iteration includes one forward propagation and
one backward propagation.

Results. As shown in Figure 2, those real-life models are
mainly comprised of convolutional layer (Conv Layer), Pool-
ing layer, Relu layer, Fully Connected Layer (FC Layer) and
Concat layer (in GooLeNet). Convolutional layer consumes the
bulk of total runtime (86%, 89%, 90% and 94% respectively
in four CNN models).

Analysis. Convolutional layer involves large amount of
computation-intensive operations and requires substantial
amount of computing resources. Especially for modern ad-
vanced CNN models, the computing cost of convolutional
layers is getting much higher due to the increasingly more
filters and layers, smaller strides and their combinations [17].
Therefore, we primarily focus on evaluating the performance
of convolutional layer in this paper.

B. Runtime Comparison

We run five groups of experiments in terms of runtime that
is averaged over 10 iterations on GPUs, to compare the total
runtime of a single convolutional layer of the seven imple-
mentations (Caffe, cuDNN, cuda-convnet2, Theano-CorrMM,
Theano-fft, Torch-cunn and fbfft) with respect to different
size of mini-batch, input image, filter number, kernel size and
stride. For a better performance comparison, the total runtime
we test here does not include the time of network initialization
and data preparation. We organize those 5 parameters into a
5-tuple (b, i, f, k, s) similar to [35]. In order to investigate
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Fig. 3: Runtime comparison for seven convolutional imple-
mentations on GPU with varing configurations.

how each parameter impacts on the overall performance of
convolutional layer, our evaluation is divided into five groups.
Each group only tests one kind of the parameters, and the
other four parameters are fixed. All input images and kernels
are square and we have a basic configuration 5-tuple (64, 128,
64, 11, 1). According to five different parameters, we have five
groups of 5-tuples: (b, 128, 64, 11, 1), (64, i, 64, 11, 1), (64,
128, f , 11, 1), (64, 128, 64, k, 1) and (64, 128, 64, 11, s).
Taking the first tuple for example, we test a changeable mini-
batch by fixing the other four parameters. In addition, we also
observe the shape limitations for each implementation during
the runtime comparison.

Results. Figure 3(a and b) shows the speed of the seven
implementations in different mini-batch size and input size,
which ranges from 32 to 512 and 32 to 256 with multiple
of 32 and 16 respectively. The runtime clearly presents the
advantage of fbfft over other implementations (from 1.4× to
9.7×) in all given mini-batch and input sizes, while Theano-fft
results in the slowest speed. For unrolling-based convolution,
cuDNN has consistent superior performance in all given mini-
batch and input sizes. The performance of cuda-convnet2 is

not stable with different mini-batch sizes. It performs well only
for those cases when mini-batch size is a multiple of 128.

In Figure 3(c), filter number ranges from 32 to 512 with
multiple of 16. In this configuration space, fbfft is con-
sistently faster than other implementations (from 1.19× to
5.1×), while Theano-fft still results in the worst performance.
Cuda-convnet2 cannot support all given filter numbers in our
experiment and thus its runtime on GPU is reported with
dots in Figure 3(c). For unrolling-based convolution, Theano-
CorrMM slightly outperforms its counterparts with large filter
numbers (greater than 160 in our experiment).

In Figure 3(d), for small kernel size (smaller than 7 in
our experiment) cuDNN and Theano-CorrMM result in better
performance than others. For example, the speed advantage
of cuDNN over fbfft is from 1.21× to 2.62×. But with the
increasing of the kernel size (greater than 7), the runtime
of fbfft tends to be a constant value and the performance
advantage is becoming increasingly obvious. For example,
fbfft is becoming increasingly faster than cuDNN (from 1.15×
to 19×). In addition, the performances of cuda-convnet2 and
cuDNN are very close with all given kernel sizes.

In Figure 3(e), fbfft outperforms other implementations
when stride is size of 1. Because fbfft and Theano −
conv2d fft only support stride size of 1, their runtime is
denoted as an spot in the figure. For greater stride (greater
than 1), cuDNN results in the best performance.

Analysis. The speed of each implementation varies with
different configurations and there is no single implementation
that is the fastest for all given scenarios in our experiments. We
summarize the main observations from runtime comparison as
follows:

• fbfft is the overall fastest convolutional implementation
and cuDNN performs the second best in most scenarios.

• For small kernels (smaller than 7 in our experiment),
cuDNN outperforms fbfft. Otherwise, fbfft is faster than
cuDNN.

• For unrolling-based convolution, cuDNN is the over-
all fastest implementation. But for large filter numbers
(greater than 160 in our experiment), Theano-CorrMM
slightly outperforms cuDNN.

• cuda-convnet2 performs well only for certain cases, such
as for mini-batch sizes of multiple of 128.

In most scenarios, the speed of fbfft is much faster due to
its low arithmetic complexity compared with unrolling-based
convolution and direct convolution. cuDNN is much slower
than fbfft when computing convolution with a large kernel size
(large than 7 in our experiment). But for a small kernel size
(smaller than 7 in our experiment), fbfft is a bit slower than
cuDNN. In essence, this arises from the differences between
their convolution strategies. fbfft can benefit significantly from
dramatic reduction of arithmetic complexity when running on
a large kernel size. But for a small kernel, the computational
cost of fbfft is higher than other counterparts, which leads
to a lower speed. It is important to note that fbfft and
Theano-fft share the similar convolution strategy, but they
present a clear difference in performance. Because of different
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implementation techniques, fbfft is much faster than Theano-
fft. Cuda-convnet2 was optimized for mini-batch sizes of a
multiple of 128, and thus performs well only in those cases.

Summary. From the perspective of speed, fbfft is the fastest
implementation to train a CNN model with large kernels. For
small kernels, cuDNN would be a good choice. Moreover, for
a model with small kernel and large filter number, Theano-
CorrMM slightly outperforms other implementations.

From the perspective of shape restrict, unrolling-based im-
plementations are most flexible in configuration selection as
they support any possible shapes. Cuda-convnet2 only supports
square input images and square kernels, its mini-batch size
must be a multiple of 32 and its filter number must be a
multiple of 16. FFT-based convolutions (i.e., fbfft and Theano-
fft) are applicable to any configuration shapes except that their
stride must be 1.

V. DETAILED PERFORMANCE PROFILING

In this section, we primarily focus on the performance pro-
filing of convolutional layer in each implementation. First step,
we conduct a detailed hotspot kernel analysis to look more
closely at the inside of each convolutional implementation.
Secondly, we evaluate the memory usage for each convolution
implementation. Thirdly, we report a comprehensive profiling
and analysis of the GPU performance for those convolution
implementations. Finally, we evaluate the data transfer over-
head between CPU and GPU.

A. Hotspot Kernels in Convolutional Layer

A convolutional layer in each implementation consists of
multiple kernels and it is worthwhile to figure out which
kernel determines the overall performance of convolutional
layers. The analysis of hotspot kernels helps understanding
and identifying which kernels dominate the total runtime in
convolutional layer.

For different configurations, the convolutional layer in the
same implementation shows the similar hotspot kernel results.
We thus choose one set of configuration (64, 128, 64, 11,
1), which indicates that a square input of size 128, 64 mini-
batch size, 64 filters, square kernel of size 11 and stride of
size 1, as the representative to analyze hotspot kernels. Based
on the profiling results, we group the similar kernels who
have the same functionalities into one. Take GEMM (General
Matrix to Matrix Multiplication) as an example, all different
kernels that are responsible for matrix-matrix or matrix-vector
multiplications are classified into GEMM.

Results. Figure 4 shows the hotspot kernels developed
for convolutional layer of each implementation in terms of
percentages. As we can see, different convolution strategies
result in totally different hotspot kernel results. Even for the
same convolution strategy, the kernels can be clearly different
due to different implementation methods. According to Figure
4(a,b,c), for unrolling-based convolution, Caffe, Torch-cunn
and Theano-CorrMM have similar hotspot kernel results, in
which GEMM operations take up 87%,83%,80% of their total
runtime respectively. But the hotspot kernel results of cuDNN

 GEMM  im2col_gpu_kernel 
 col2im_gpu_kernel  CUDA memset

 

 

(a) Caffe

 GEMM  im2col_gpu_kernel 
 col2im_gpu_kernel  CUDA memset

 

 

(b) Torch-cunn

 GEMM  im2col_gpu_kernel 
 col2im_gpu_kernel  CUDA memcpy HtoD

 

 

(c) Theano-CorrMM

 wgrad_alg0_engine  cuDNN_gemm
 add_tensor_kernel  CUDA Memset 

  calc_bias_diff

 

 

(d) cuDNN

 filterActs_YxX_color  img_acts_color 
 conv_weight_acts_c_preload  memcpy

 

(e) cuda-convnet2

 k_copy_4d  CUDA memcpy HtoD  radixM_kernel 
 GEMM  CUDA memset  kernel_Mul_node

 

 

(f) Theano-fft

 GEMM  decimateInFrequency    Transpose
 other   accGradParametersBias 
 decimateInFrequencyInverse  updateOutputBias

 

(g) fbfft

Fig. 4: Runtime breakdowns of convolutional layers in differ-
ent implementations.

are totally different with its counterparts (Caffe, Torch-cunn
and Theano-CorrMM) due to its different kernel implemen-
tations. As shown in Figure 4(d), wgrad alg0 engine and
cuDNN gemm dominate the runtime of cuDNN. cuda-
convnet2 computes for convolutional layers directly, which
is mainly achieved by three kernels: filterActs Y xX olor,
im acts color and conv weight acts c preload.

Analysis. We summarize some observations as follows:
• GEMM operations are the essence of convolutional lay-

ers. Especially in unrolling-based convolution, GEMMs
are dominant of the total runtime, followed by unrolling
operations.

• For FFT-based convolution, GEMM, FFT transform, FFT
inverse and data transposition account for most of the
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runtime in fbfft. On the contrary, most of the runtime is
spent on data preparation and data transfer between CPU
and GPU in Theano-fft.

For unrolling-based convolution, in Caffe, Torch-
cunn and Theano-CorrMM, im2col gpu kernel and
col2im gpu kernel mainly take up the rest of the runtime.
im2col gpu kernel is used to unroll the input data and
filters to double large matrixes and then the traditional
convolution can be converted into a clean matrix-matrix
multiplication by using highly-optimized GEMM libraries.
The col2im gpu kernel is used to convert the multiplication
result back to the right format, the same as the format
before unrolling. In cuDNN, the unrolling operations and
matrix-matrix multiplications are optimized by using shared
memory and tiled matrix multiplication [24], which is mainly
achieved by wgrad alg0 engine and cuDNN gemm
kernels.

For FFT-based convolution, the computation of convolu-
tional layers is mainly achieved by three steps in fbfft.
Firstly, the kernel decimateInFrequency uses DIF algo-
rithm to transform input and weight data from spatial do-
main to frequency domain. Secondly, the Transpose ker-
nel is used to convert the BDHW layout into HWBD
and then conducts Cgemm matrix multiplications. Thirdly,
the Transpose kernel converts the Cgemm results back
to BDHW layout and performs an inverse FFT by using
decimateInFrequencyInverse [25].

Summary. GEMM is the essence of convolutional layers in
unrolling-based implementations, which indicates that kernels
responsible for GEMM computing are the first-order modules
to be optimized. So are FFT and Cgemm in fbfft.

B. Memory Usage

For most applications at present, memory is not the primary
limitations, and while the fastest algorithm is considered as the
best algorithm. As a result, a common way to rank order algo-
rithms is using their computing speeds as a criterion. However,
GPU cannot afford a large memory-consuming application due
to its limit device memory. Thus memory usage also should
be considered as a significant portion on GPUs.

Results. We use nvidia-smi to monitor memory usage on
GPU for each implementation. Figure 5 shows the peak mem-
ory consumption of the seven convolutional implementations
by varying different parameters that are similar to runtime
comparison. In all given scenarios of our experiments, cuda-
convnet2 have the lowest consumption of GPU memory (from
125 MB to 2076 MB), followed closely by Torch-cunn (from
170 MB to 2093 MB). While the other three unrolling-based
implementations, cuDNN, Caffe and Theano-CorrMM, are of
a relatively higher consumption (from 155MB to 3810MB,
from 136MB to 3809MB and from 130MB to 3709MB
respectively). On the contrary, FFT-based convolution have
the highest consumption of GPU memory. Taking fbfft as
an example, it consumes a large amount of GPU memory,
from 1632 MB to 10866 MB in our experiments. There are
also several abnormal memory consumptions in FFT-based
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Fig. 5: Memory usage comparison for seven convolutional
implementations on GPU with varing configurations.

implementations. Figure 5 (b) shows that there are dramatic
fluctuations in memory usage of fbfft over certain input size.
The same fluctuation also can be observed in fbfft and Theano-
fft in Figure 5 (d). Such abnormal memory usage can lead to
program crush which we will investigate as part of future work.

Analysis. We summarize main observations from the above
results as follows:

• cuda-convnet2 is the most memory efficient one in all
scenarios given in our experiment.

• Torch-cunn is the overall most memory efficient im-
plementation in unrolling-based convolution, while with
the increase of kernel size, cuDNN becomes the most
memory efficient implementation.

• fbfft requires the most memory, followed by Theano-fft.
Cuda-convnet2 computes the convolution directly and thus

does not need temporary memory to keep intermediate data.
Compared with cuda-convnet2, Caffe, Theano-CorrMM and
Torch-cunn require extra memory to store the unrolled matri-
ces using, but there are still slight differences of memory usage
due to different data layouts and programming techniques
between them. Although cuDNN does not need extra memory

6

Administrator
高亮

Administrator
高亮

Administrator
下划线

Administrator
下划线

Administrator
高亮

Administrator
高亮

Administrator
下划线

Administrator
高亮

Administrator
高亮

Administrator
高亮



TABLE I: Convolution configurations for benchmarking

Layers Configuration (b,i,f,k,s)
Conv1 (128,128,96,11,1)
Conv2 (128,128,96,3,1)
Conv3 (128,32,128,9,1)
Conv4 (128,16,128,7,1)
Conv5 (128,13,384,3,1)

for unrolling, it consumes more memory than other unrolling-
based implementations to achieve a better performance.

On the contrary, low computational complexity of FFT-
based implementations and highly optimized CUDA codes
bring an excellent speed to fbfft, however, at the expense of
an unreasonable memory consumption. The main reason is
that FFT-based implementations require substantial amounts
of temporary memories to keep the intermediate data such
as input and filter data of the Fourier domain, and they also
need extra memory for zero-padding to extend filter bank
to be the same size of input. Therefore, when choosing a
CNN implementation, a trade-off between speed and memory
consumption needs to be considered.

Summary. Cuda-convnet2 is well suitable for cases when
the memory is limited. Otherwise, fbfft is a great choice to
compute for convolutional layer. If a good balance between
memory, speed and flexibility is needed, cuDNN is most likely
the best choice.

C. GPU Performance Evaluation

In this subsection, we conduct a detailed runtime profiling
study based on nvprof CUDA tool. Metrics and events are
collected by using nvprof to analyze kernel performance during
kernel execution. An event collects hardware counter values
during kernel execution and a metric is computed based on one
or more event values to identify characteristics of an CUDA
application [14]. To investigate the performance differences
among seven different convolution implementations, we use
the following metrics to profile GPU performance [14]:

• achieved occupancy is the ratio of the average active
warps per active cycle to the maximum number of warps
supported on a SM.

• ipc is the instructions executed per cycle.
• warp execution efficiency is the Ratio of the average

active threads per warp to the maximum number of
threads per warp supported on a multiprocessor expressed
as percentage.

• gld efficiency and gst efficiency is the ratio of requested
global memory load/store throughput to required global
memory load/store throughput.

• shared efficiency is the ratio of requested shared memory
throughput to required shared memory throughput.

Five representative convolutional configurations that are
commonly used for benchmarking of convnet in [27] are
used in our performance profiling to capture various behaviors
and performance characteristics. But in order to result in a
performance difference, we select a new configuration as the
second layer in our evaluation, which has a large input and a
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Fig. 6: GPU performance profiling. From bottom to top
are runtime (ms), achieved occupancy (%), warp execution
efficiency (%), global store/load efficiency (%), IPC and shared
memory efficiency (%), respetively.

small kernel. As shown in Table I, the five configurations, to
a certain extent, can represent the configurations of real-life
CNNs. For example, in the first two configurations in Table
I, the kernel size are quite small compared to the input size,
which is common in the first few layers of a real-life CNN
models. The last few layers of real-life CNN models often
have more filters and large kernel size relative to input image
[2], [24].

As shown in Figure 4, there are multiple kernels in each im-
plementation and each kernel performs different functionalities
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of convolutional layer. In order to evaluate an overall perfor-
mance of each implementation on GPU, we prefer to profile
metrics and events for top kernels of each implementation and
then take a weighted average of those top kernels to get the
final estimate of performance metrics for that implementation.
The weight of each kernel is determined by the percentage of
its runtime in the whole implementation.

All seven convolutional implementations in our experiments
are based on three convolution strategies. Each strategy adopts
different methodology and thus has different computational
complexity. For a fair comparison, we analyze the performance
metrics according to three convolution strategies. Figure 6
presents the performance profiling results in terms of speed
and five metrics for top kernels of each convolutional imple-
mentation by running over five convolution configurations in
Table I.

The runtime part in Figure 6 shows that cuDNN is the
fastest implementation in unrolling-based convolution and fbfft
is the fastest one in FFT-based convolution. As expected, their
better performance can be supported by their better metric
values. For unrolling-based implementation, the metrics (ipc,
achieved occupancy and shared efficiency) of cuDNN
are overall better than the metrics of its counterparts (Caffe,
Torch-cuNN and Theano-CorMM). For FFT-based convolu-
tion, the metrics of fbfft are much better than the metrics of
Theano-fft. Cuda-convnet2 also has efficient metric profiling
results.

1) Observation in achieved occupancy: As shown in
achieved occupancy part in Figure 6, most implementations
have relatively low achieved occupancy (less than 30%).
Especially, the achieved occupancy in cuda-convnet2 is lower
than the average level, from 14% to 22%.

Analysis. As shown in Figure 6, cuDNN has an overall
better performance and is somehow related to its higher
percentages (from 29% to 37%) of achieved occupancy com-
pared with other unrolling implementations. However, a higher
occupancy does not mean a better performance. For FFT-
based convolution, Theano-fft has higher percentages (39%
to 59%) but worse performance. The achieved occupancy in
cuda-convnet2 is low, from 14% to 22%, which indicated that
top kernels in cuda-convnet2 does not generate enough threads
to hide potential latency.

The essence of GPU performance lies in whether the
problem can be computed in a high degree of parallel and
whether the limited resources on GPUs are allocated reason-
ably. Threads on GPUs are grouped into warps (32 threads
per warp on Tesla K40c) and these warps execute in parallel
on GPUs. The context of each warp can be switched almost
zero-overhead by GPU hardware scheduler. Long access la-
tencies can be hidden by this zero-overhead context switching
when there are enough parallel threads running on GPUs.
The resources (e.g., registers and shared memories) are very
limited on each SM of GPUs. Reasonable use of those fast
memory resources can significantly improve the performance.
But using them too much can reduce the total active warps

on GPU, which can leads to low occupancy and performance
degradation.

To investigate the reason behind low occupancy, we profile
the usage of register and shared memory for each implemen-
tation as reported in Table II. cuda-convnet2 has the overall
lowest percentages of achieved occupancy, which is mainly
correlated to its bad usage of register and shared memory.
Tesla K40c provides 65536 registers of the maximum amount
per SM, while 116 registers are used in cuda-convnet2 by
each thread. As a result, the theoretical active threads are only
564 (17 active warps), which is far less than device maximum
active threads 2048(64 active warps) per SM and thus leads to
a low achieved occupancy. Similarly, too much use of shared
memory can also lead to low occupancy. On the contrary, little
use of register and shared memory may contribute to a high
achieved occupancy, which can also bring in bad performance
due to long access latency from global memory. As shown
in Figure 6, although the occupancy of Theano-fft is higher
than that of fbfft, its performance is far worse than that of
fbfft. One of the main reason to explain that is the little use
of register and shared memory.

Summary. Occupancy is limited by three potential factors:
register usage, shared memory usage and block size. It is
important that GPU-based CNN implementations carefully
balance these factors to improve the overall performance.

2) Observation in global memory access efficiency: As
shown in Figure 6, most of implementations have relatively
low percentages of global load and store efficiency, less than
20% for global load efficiency and less than 60% for global
store efficiency.

Analysis. Global memory is the largest memory space on
GPUs and most data is firstly initialized on it. It also has the
highest access latency. The metric gld and gst efficiency
can be measured to evaluate how efficient the threads within a
kernel write or read on global memory. When global load or
store efficiency is less than 100%, it indicates that there exists
request replays in global memory access due to inappropriate
access pattern, such as unaligned or non-coalesced memory
access.

As we can see from Figure 6, Caffe, Torch-cunn, Theano-
CorrMM and Theano-fft have very low global memory load
efficiencies, especially for Theano-CorrMM (from 11.64% to
15.79%), mainly because of non-coalesced accesses during
their kernel executions. In cuDNN, for some top kernels that
are responsible for the operations of unrolling and matrix
multiplication use little global memory. Instead, most of the
computation for convolutional layers in cuDNN is conducted
on shared memory only. Therefore, the global access efficiency
of those top kernels is 0%. However, for other top kernels
that pre-compute for convolution in cuDNN are conducted
on global memory and result in low global load and store
efficiencies, which mainly contributes to the overall low global
access efficiency of cuDNN in Figure 6. Similarly, low global
memory access efficiencies of fbfft is also due to little use of
global memory by certain top efficient kernels.
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TABLE II: Register numbers per thread and shared memory
usage per block of different implementations.

Implementation Registers Shared Memory(KB)
Caffe 86 8.5

cuDNN 80 8.4
Torch-cunn 84 8.1

Theano-CorrMM 72 7
cuda-convnet2 116 16

fbfft 106 10
Theano-fft 2 4.5

Summary. It is desirable to use on-chip memory as much
as possible, combined with aligned and coalesced access,
to improve the efficiency of global memory access. Further
optimization for different GPU-based CNN is required in this
area.

3) Observation in shared memory efficiency: As shown in
Figure 6, Theano-fft have the lowest percentages (from 8.16%
to 20%) of shared efficiency, while other implementations have
relatively higher percentages.

Analysis. Shared memory is divided into banks on GPUs
and bank conflict (or broadcast) occurs when multiple threads
in a warp simultaneously access the same bank. When a bank
conflict occurs, the accesses to the same bank are serialized
by shared memory system, which leads to a significant per-
formance decrease. A low shared efficiency implies that there
are bank conflicts during kernel execution.

Observed from the runtime part in Figure 6, Theano-fft is
much slower than its counterpart (fbfft), which can be sup-
ported by the evidence of their shared efficiencies. As shown
in Figure 6, the shared efficiency of Theano-fft is much lower
than that of fbfft, which indicates that there are many bank
conflicts during its kernel execution and thus leads to a worse
performance. For unrolling based implementations, cuDNN
has the overall highest percentages of shared efficiency (over
130% in most cases). The shared efficiency in Caffe, Torch-
cunn and Theano-CorrMM is still excellent because most of
their GEMM operations are computed by using cuBlas that is
highly optimized on shared memory and thus they are of a
relatively higher shared memory efficiency.

Summary. Shared memory is a particularly important re-
source to optimize GPU kernels. Bank conflicts are the primary
concern to improve the performance of Theano-fft. One should
carefully design kernels so as to avoid multiple threads in the
same warp access the same bank. Moreover, memory padding
is another way to avoid bank conflict for some access patterns.

4) Observation in warp execution efficiency (WEE): Most
of the implementations achieve an excellent WEE (over 97%),
while Theano-fft has a much lower WEE.

Analysis. The metric of WEE is used to measure how
efficient the threads execute in a warp. The maximum number
of threads per warp in K40c is 32. All the 32 threads in a
warp execute the same instructions. If the threads in a warp
take different control paths, it is assumed to be divergent.

Figure 6 shows that the WEE is quite low for Theano-fft on
different configurations (from 66% to 81%), which indicates
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Fig. 7: Data transfer overheads of different implementations
over five configurations.

that there are warp divergent branches and the kernels in
Theano-fft suffer from diminished SIMD efficiency caused by
serialized execution of divergent branches.

Summary. The metric of WEE provides a thread-level in-
sights of GPU performance. For Theano-fft, control divergence
can be reduced by redesigning its kernel codes to avoid the
use of control flow statement (e.g., if-else) as little as possible
or converting the control statement into non-control statement.
Otherwise, we have to rearrange the data access patterns of
Theano-fft to increase WEE.

D. Overhead of Data Transfer Between CPU and GPU

The data transfer overhead between CPU and GPU can be
crucial to the performance if that takes up too much of total
runtime. Therefore, programmers must be conscious of the
overhead of data transfer in CPU-GPU hybrid system.

Results. Figure 7 provides quantitative analysis of the rela-
tive time spent on data transfer of each convolution implemen-
tation across five typical different convolutional configurations.
As shown, cuDNN, Caffe and fbfft have the lowest percentage
(almost 0%) of data transfer time, while Torch-cunn, cuda-
convnet2 and Theano-fft have relatively higher percentage
(from 1% to 15%). Interestingly, Theano-CorrMM in the
second configuration (Conv2) has a significant data transfer
overhead (more than 60% of its total runtime).

Analysis. The difference in data transfer overhead is not
fixed, but changes with the different configurations. Even with
the same convolution strategy, the overhead of data transfer is
not identical at all due to different program techniques. Take
Caffe as example, before starting to compute convolution, a
data prefetching thread is used to hide the latency from CPU-
GPU data transfer.

Summary. A big overhead of data transfer between CPU
and GPU can lead to an overall performance degradation. To
improve that, one can reduce the transfer overhead by the
following methods.

• Using pinned memory to improve the bandwidth.
• Using asynchronous transfer to hide the latency from

CPU-GPU data transfer.
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• Lowing the transfer frequency by organizing many small
data transfers to a large data transfer.

VI. CONCLUSION

Training CNNs on large data sets is computation intensive,
leading to a flurry of research and development of open-
source parallel implementations on GPUs. The goal of this
work is to assist practitioners identifying the most appropriate
CNN implementations for different scenarios, and provide
insights and suggestions to practitioners and pinpoint aspects
for researchers who are interested in convolution optimization
on GPU.

In this paper, we compare the performance of seven popular
CNN implementations by running them over a wide range
of parameter space on Tesla K40c. We investigate the merits
and shortcomings for those implementations in terms of speed,
memory and shape limitation. No single implementation is the
best for all scenarios and we have to make trade-offs between
speed and memory usage in these implementations.

We present a detailed performance analysis for those im-
plementations and explore potential bottlenecks and acceler-
ation opportunities. We can conclude that no single metric
can determine the performance and we have to tune several
metrics to achieve the best performance. Moreover, a deep
understanding of the algorithm and hardware characteristic is
extremely important to accelerate these implementations.

ACKNOWLEDGMENT

This work was supported by the National Natural Science
Foundation of China under Grants 61170008 and 61272055,
the National Grand Fundamental Research 973 Program of
China under Grant No. 2014CB340402, and the Open Project
Program of the State Key Laboratory of Mathematical Engi-
neering and Advanced Computing.

REFERENCES

[1] NVIDIA, CUDA C Programming Guide, 2015.
[2] Krizhevsky, A., Sutskever, I., and Hinton, G. E. ImageNet classification

with deep convolutional neural networks.In NIPS, pp. 1106-1114, 2012.
[3] Sainath, T., Mohamed, A.-R., Kingsbury, B. & Ramabhadran, B. Deep

convolutional neural networks for LVCSR. In Proc. Acoustics, Speech
and Signal Processing 8614-8618, 2013.

[4] Dario Amodei, Rishita Anubhai, Eric Battenberg, Carl Case, Jared
Casper, Bryan Catanzaro, Jingdong Chen, Mike Chrzanowski, Adam
Coates, Greg Diamos, Erich Elsen, et al. Deep Speech 2:End-to-End
Speech Recognition in English and Mandarin. arXiv:1512.02595, 2015.

[5] Zhang, X., Zhao, J., LeCun, Y. Character-level Convolutional Networks
for Text Classification, arXiv: 1509.01626, 2015.

[6] Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou, and Jun Zhao.
Relation classification via convolutional via convolutional deep neural
network. In Proceedings of COLING 2014, pages 2335-2344, August
2014.

[7] Nguyen, T. H., Grishman, R. Relation Extraction: Perspective from
Convolutional Neural Networks. Workshop on Vector Modeling for NLP,
pp. 39-48, 2015.

[8] Y. LeCun and C. Cortes. MNIST Handwritten Digit Database,
http://yann.lecun.com/exdb/mnist, August 2009.

[9] Zeiler, M. D. and Fergus, R. Visualizing and understanding convolutional
networks. CoRR, abs/1311.2901, 2013. Published in Proc. ECCV, pp.
818-833, 2014.

[10] Simonyan, Karen, and Andrew Zisserman. ”Two-stream convolutional
networks for action recognition in videos.” In Advances in Neural
Information Processing Systems, pp. 568-576. 2014.

[11] A. Krizhevsky, V. Nair, and G. Hinton. CIFAR-10 Dataset.
https://www.cs.toronto.edu/ kriz/cifar.html.

[12] Simonyan, Karen, and Andrew Zisserman. ”Very deep convolu-
tional networks for large-scale image recognition.” arXiv preprint
arXiv:1409.1556, 2014.

[13] NVIDIA. https://developer.nvidia.com/cuda-zone.
[14] Docs Nvidia 2015 Profiler User Programming Guide CUDA Toolkit

documentation.
[15] Szegedy, Christian, et al. ”Going deeper with convolutions.” Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 1-9, 2015.

[16] Deng, Jia, et al. ”Imagenet: A large-scale hierarchical image database.”
Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE
Conference on. IEEE, 2009.

[17] He, Kaiming, and Jian Sun. ”Convolutional neural networks at con-
strained time cost.” Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 5353-5360, 2015.

[18] Krizhevsky, A. One weird trick for parallelizing convolutional neural
networks. CoRR, abs/1404.5997, 2014.

[19] James Bergstra, Olivier Breuleux, Frederic Bastien, Pascal Lamblin,
Razvan Pascanu, Guillaume Desjardins, Joseph Turian, DavidWarde-
Farley, and Yoshua Bengio. Theano: a cpu and gpu math expression
compiler. In SciPy, volume 4, page 3, 2010.

[20] Ronan Collobert, Koray Kavukcuoglu, and Clement Farabet. Torch:
A matlab-like environment for machine learning. In BigLearn, NIPS
Workshop, 2011.

[21] J. Donahue, Y. Jia, O. Vinyals, J. Homan, N. Zhang, E. Tzeng, and
T. Darrell. Decaf: A deep convolutional activation feature for generic
visual recognition. CoRR, abs/1310.1531, 2013.

[22] Sermanet, Pierre, et al. ”Overfeat: Integrated recognition, localiza-
tion and detection using convolutional networks.” arXiv preprint
arXiv:1312.6229, 2013.

[23] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan
Long, Ross Girshick,Sergio Guadarrama, and Trevor Darrell. Caffe:
Convolutional architecture for fast featureembedding. arXiv preprint
arXiv:1408.5093, 2014

[24] Chetlur, Sharan, et al. ”cudnn: Efficient primitives for deep learning.”
arXiv preprint arXiv:1410.0759, 2014.

[25] Nicolas Vasilache, Jeff Johnson, Michael Mathieu, Soumith Chintala,
Serkan Piantino, Yann LeCun. FAST CONVOLUTIONAL NETS WITH
fbfft : A GPU PERFORMANCE EVALUATION. arXiv: 1412.7580.
2015.

[26] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning.
Nature, 521:436-444, 2015.

[27] convnet-benchmarks. https://github.com/soumith/convnet-benchmarks,
2014.

[28] cuda-convnet2.torch. https://github.com/soumith/cuda-convnet2.torch,
2014.

[29] NVidia, C. U. D. A. ”CUDA Profiler Users Guide (Version 6.5):
NVIDIA.” Santa Clara, CA, USA, 2014.

[30] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-Based Learn-
ing Applied to Document Recognition, in Proc. of the IEEE, vol. 86,
no. 11, 1998, pp. 2278-2324.

[31] http://deeplearning.net/software/theano/index.html
[32] Kumar Chellapilla, Sidd Puri, Patrice Simard, et al. High performance

convolutional neural networks for document processing. In Workshop
on Frontiers in Handwriting Recognition, 2006.

[33] Ronan Collobert, Koray Kavukcuoglu, and Clement Farabet. Torch:
A matlab-like environment for machine learning. In BigLearn, NIPS
Workshop, 2011.

[34] James Bergstra, Olivier Breuleux, Frederic Bastien, Pascal Lamblin,
Razvan Pascanu, Guillaume Desjardins, Joseph Turian, DavidWarde-
Farley, and Yoshua Bengio. Theano: a cpu and gpu math expression
compiler. In SciPy, volume 4, page 3, 2010.

[35] Michael Mathieu, Mikael Henaff, and Yann LeCun. Fast training of
convolutional networks through ffts. arXiv preprint arXiv:1312.5851,
2013.

10


